Consejo Superior de Investigaciones Científicas · Universidad de Sevilla
es    en
♦ Defensa de Tesis Doctoral
Diseño de controladores y sensores virtuales lineales a tramos y seguros en circuitos integrados CMOS.
Macarena C. Martínez Rodríguez
25 Junio 2018  ·  11:00 h.
Machine learning: cuando las máquinas aprenden.
Luis A. Camuñas Mesa
17 Mayo 2018
Tecnologías de Medida de Materiales.
17 Mayo 2018
El Consejo de Gobierno de la Universidad de Sevilla ha otorgado una ayuda para profesores del Plan de fomento de la actividad investigadora excepcional para el año 2018 al grupo de investigación del IMSE-CNM 'Diseño de Circuitos Integrados Digitales y Mixtos', por un artículo publicado por el investigador Gustavo Liñán Cembrano en la revista Science.   [+info artículo]
8 Mayo 2018
El Dr. Ángel Rodríguez Vázquez, profesor de la Universidad de Sevilla e investigador del IMSE-CNM, ha sido uno de los galardonados con el I Premio a la Transferencia del Conocimiento de la Universidad de Sevilla, como reconocimiento a sus investigaciones de excelencia mediante contratos con empresas e instituciones, resultando en brillantes ejemplos de colaboración público-privada. El galardón fue entregado en el Paraninfo de la Universidad el día 3 de Mayo de 2018.   [+info]

Unidades de Investigación en el IMSE

El Mundo de los Chips

Oferta de servicios basados en el sistema automático de test ATE Agilent 93000

El IMSE en los medios

Tríptico informativo

El IMSE en Linkedin

El IMSE en Linkedin

El IMSE en Digital.CSIC

El IMSE en Digital.CSIC

Últimas publicaciones
Arrayable Voltage-Controlled Ring-Oscillator for Direct Time-of-Flight Image Sensors  »
Direct time-of-flight (d-ToF) estimation with high frame rate requires the incorporation of a time-todigital converter (TDC) at pixel level. A feasible approach to a compact implementation of the TDC is to use the multiple phases of a voltage-controlled ring-oscillator (VCRO) for the finest bits. The VCRO becomes central in determining the performance parameters of a d-ToF image sensor. In this paper we are covering the modeling, design and measurement of a CMOS pseudo-differential VCRO. The oscillation frequency, the jitter due to mismatches and noise and the power consumption are analytically evaluated. This design has been incorporated into a 64×64-pixel array. It has been fabricated in a 0.18μm standard CMOS technology. Occupation area is 28×29μm2 and power consumption is 1.17mW at 850MHz. The measured gain of the VCRO is of 477MHz/V with a frequency tuning range of 53%. Moreover, it features a linearity of 99.4% over a wide range of control frequencies, namely from 400MHz to 850MHz. The phase noise is of -102dBc/Hz at 2MHz offset frequency from 850MHz. The influence of these parameters in the performance of the TDC has been measured. The minimum time bin of the TDC is 147ps with a RMS DNL/ INL of 0.13/ 1.7LSB.

Conference - IEEE International Symposium on Circuits and Systems ISCAS 2018
I. Vornicu, R. Carmona-Galán and Á. Rodríguez-Vázquez
A comparative analysis of VLSI trusted virtual sensors  »
This paper analyzes three cryptographic modules suitable for digital designs of trusted virtual sensors into integrated circuits, using 90-nm CMOS technology. One of them, based on the keyed-hash message authentication code (HMAC) standard employing a PHOTON-80/20/16 lightweight hash function, ensures integrity and authentication of the virtual measurement. The other two, based on CAESAR (the Competition for Authenticated Encryption: Security, Applicability, and Robustness) third-round candidates AEGIS-128 and ASCON-128, ensure also confidentiality. The cryptographic key required is not stored in the sensor but recovered in a configuration operation mode from non-sensitive data stored in the non-volatile memory of the sensor and from the start-up values of the sensor SRAM acting as a Physical Unclonable Function (PUF), thus ensuring that the sensor is not counterfeit. The start-up values of the SRAM are also employed in the configuration operation mode to generate the seed of the nonces that make sensor outputs different and, hence, resistant to replay attacks. The configuration operation mode is slower if using CAESAR candidates because the cryptographic key and nonce have 128 bits instead of the 60 bits of the key and 32 bits of the nonce in HMAC. Configuration takes 416.8 μs working at 50 MHz using HMAC and 426.2 μs using CAESAR candidates. In the other side, the trusted sensing mode is much faster with CAESAR candidates with similar power consumption. Trusted sensing takes 212.62 μs at 50 MHz using HMAC, 0.72 μs using ASCON, and 0.42 μs using AEGIS. AEGIS allows the fastest trusted measurements at the cost of more silicon area, 4.4 times more area than HMAC and 5.4 times more than ASCON. ASCON allows fast measurements with the smallest area occupation. The module implementing ASCON occupies 0.026 mm2 in a 90-nm CMOS technology.

Journal Paper - Microprocessors and Microsystems, vol. 61, pp 108-116, 2018 ELSEVIER
DOI: 10.1016/j.micpro.2018.05.016    ISSN: 0141-9331    » doi
M.C. Martínez-Rodríguez, P. Brox and I. Baturone
Hybrid Neural Network, an Efficient Low-Power Digital Hardware Implementation of Event-based Artificial Neural Network  »
Interest in event-based vision sensors has proliferated in recent years, with innovative technology becoming more accessible to new researchers and highlighting such sensors' potential to enable low-latency sensing at low computational cost. These sensors can outperform frame-based vision sensors regarding data compression, dynamic range, temporal resolution and power efficiency. However, available mature frame-based processing methods by using Artificial Neural Networks (ANNs) surpass Spiking Neural Networks (SNNs) in terms of accuracy of recognition. In this paper, we introduce a Hybrid Neural Network which is an intermediate solution to exploit advantages of both event-based and frame-based processing. We have implemented this network in FPGA and benchmarked its performance by using different event-based versions of MNIST dataset. HDL codes for this project are available for academic purpose upon request.

Conference - IEEE International Symposium on Circuits and Systems ISCAS 2018
A. Yousefzadeh, G. Orchard, E. Stromatias, T. Serrano-Gotarredona and B. Linares-Barranco
Performance Comparison of Time-Step-Driven Versus Event-Driven Neural State Update Approaches in Spinnaker  »
The SpiNNaker chip is a multi-core processor optimized for neuromorphic applications. Many SpiNNaker chips are assembled to make a highly parallel million core platform. This system can be used for simulation of a large number of neurons in real-time. SpiNNaker is using a general purpose ARM processor that gives a high amount of flexibility to implement different methods for processing spikes. Various libraries and packages are provided to translate a high-level description of Spiking Neural Networks (SNN) to low-level machine language that can be used in the ARM processors. In this paper, we introduce and compare three different methods to implement this intermediate layer of abstraction. We have examined the advantages of each method by various criteria, which can be useful for professional users to choose between them. All the codes that are used in this paper are available for academic propose.

Conference - IEEE International Symposium on Circuits and Systems ISCAS 2018
M. Soto, A. Yousefzadeh, T. Serrano-Gotarredona, F. Galluppi, L. Plana, S. Furber and B. Linares-Barranco
An Intrinsic Method for Fast Parameter Update on the Spinnaker Platform  »
Neuromorphic Computing or Spiking (also called Event-Driven) Neural Systems are becoming of high interest as they potentially allow for lower power hardware computing platforms, where power consumption is data driven. Traditional approaches (both in software and in hardware), which are not data driven, rely on generic system state updates, consuming a fixed amount of computing resources at each step, independent on the data itself. In neuromorphic spiking or (event-driven) computing systems power is consumed (in principle) if new data is transferred, either at the system input, system output, or internally between computing nodes. One such neuromorphic event-driven computing platform is the scalable SpiNNaker system, which is aimed for a million ARM core platform, capable of emulating in the order of a billion neurons in real time. An important practical drawback of the platform is the long time it takes to download to the hardware a given computational architecture. This step has to be repeated even if one wants to update a set of parameters. Here we present a method for updating internal parameters without downloading again the full architecture, by adding special neurons into the computing architecture which when they spike change given parameters. This allows to download the computing architecture only once to the SpiNNaker platform, and then take advantage of its highly efficient communication network to command specific parameter changes. This allows for intensive parameter searches in a more efficient manner.

Conference - IEEE International Symposium on Circuits and Systems ISCAS 2018
M. Soto, T. Serrano-Gotarredona and B. Linares-Barranco

Webs relacionadas con el IMSE
Cl Américo Vespucio, 28. Parque Científico y Tecnológico Cartuja, 41092, Sevilla. Teléfono: 954466666, Fax: 954466600
jueves, 21 de junio de 2018
Última actualización: 15.06.2018

© Copyright 2018 IMSE-CNM
Los contenidos de estas páginas web tienen solo carácter informativo. Los datos que aparecen pueden contener errores o no estar actualizados.
La información disponible, salvo indicación expresa en contrario, es susceptible de ser reutilizada total o parcialmente siempre que se cite la fuente de los documentos y su fecha de actualización.
En cualquier caso, este uso se regirá de acuerdo con lo legalmente dispuesto por el Consejo Superior de Investigaciones Científicas para publicarla en cualquier soporte o para utilizarla, distribuirla o incluirla en otros contextos accesibles a terceras personas.
Aviso legal web CSIC