Consejo Superior de Investigaciones Científicas · Universidad de Sevilla
es    en
Para mejorar la defensa de los microchips hay que pasar al ataque.
Francisco E. Potestad and Erica Tena con IES San José de la Rinconada.
7 Noviembre 2019
♦ Defensa de Tesis Doctoral
Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs.
Cristina Aledo González
6 Noviembre 2019
♦ Visitas al IMSE
IES Rodrigo Caro.
23 Octubre 2019
Resolución de 17 de Octubre de 2019, de la presidencia de la comisión de selección establecida por el Instituto de Microelectrónica de Sevilla (IMSE), por la que se conceden becas de introducción a la investigación "JAE Intro ICUs", en el marco del programa 'Junta para la Ampliación de Estudios' 2019 en el Instituto de Microelectrónica de Sevilla (IMSE).

Ofertas de empleo en el IMSE

El Mundo de los Chips

Oferta de servicios basados en el sistema automático de test ATE Agilent 93000

El IMSE en los medios

Tríptico informativo

El IMSE en Linkedin

El IMSE en Linkedin

El IMSE en Digital.CSIC

El IMSE en Digital.CSIC

Últimas publicaciones
Article Data-Analytics Modeling of Electrical Impedance Measurements for Cell Culture Monitoring  »
High-throughput data analysis challenges in laboratory automation and lab-on-a-chip devices´ applications are continuously increasing. In cell culture monitoring, specifically, the electrical cell-substrate impedance sensing technique (ECIS), has been extensively used for a wide variety of applications. One of the main drawbacks of ECIS is the need for implementing complex electrical models to decode the electrical performance of the full system composed by the electrodes, medium, and cells. In this work we present a new approach for the analysis of data and the prediction of a specific biological parameter, the fill-factor of a cell culture, based on a polynomial regression, data-analytic model. The method was successfully applied to a specific ECIS circuit and two different cell cultures, N2A (a mouse neuroblastoma cell line) and myoblasts. The data-analytic modeling approach can be used in the decoding of electrical impedance measurements of different cell lines, provided a representative volume of data from the cell culture growth is available, sorting out the difficulties traditionally found in the implementation of electrical models. This can be of particular importance for the design of control algorithms for cell cultures in tissue engineering protocols, and labs-on-a-chip and wearable devices applications.

Journal Paper - Sensors, vol. 19, no. 21, art. 4639, 2019 MDPI
DOI: 10.3390/s19214639    ISSN: 1424-8220    » doi
E. García, P. Pérez, A. Olmo, R. Díaz, G. Huertas and A. Yúfera
A Neuromorphic Digital Circuit for Neuronal Information Encoding using Astrocytic Calcium Oscillations  »
Neurophysiological observations are clarifying how astrocytes can actively participate in information processing and how they can encode information through frequency and amplitude modulation of intracellular Ca2+ signals. Consequently, hardware realization of astrocytes is important for developing the next generation of bio-inspired computing systems. In this paper, astrocytic calcium oscillations and neuronal firing dynamics are presented by De Pittà and IF (Integrated & Fire) models, respectively. Considering highly nonlinear equations of the astrocyte model, linear approximation and single constant multiplication (SCM) techniques are employed for efficient hardware execution while maintaining the dynamic of the original models. This low-cost hardware architecture for the astrocyte model is able to show the essential features of different types of Ca2+ modulation such as amplitude modulation (AM), frequency modulation (FM), or both modes (AFM). To show good agreement between the results of original models simulated in MATLAB and the proposed digital circuits executed on FPGA, quantitative, and qualitative analyses including phase plane are done. This new neuromorphic circuit of astrocyte is able to successfully demonstrate AM/FM/AFM calcium signaling in its real operation on FPGA and has applications in self-repairing systems. It also can be employed as a subsystem for linking biological cells to artificial neuronal networks using astrocytic calcium oscillations in future research.

Journal Paper - Frontiers in Neuroscience, vol. 13, article 998, 2019 FRONTIERS RESEARCH FOUNDATION
DOI: 10.3389/fnins.2019.00998    ISSN: 1662-4548    » doi
F. Faramarzi, F. Azad, M. Amiri and B. Linares-Barranco
A High TCMRR, Charge Balanced Bidirectional Front-End for Multichannel Closed-Loop Neuromodulation  »
This paper describes a multichannel bidirectional front-end for true closed-loop neuromodulation. Stimulation artefacts are reduced via a 4-channel H-bridge current source sharing stimulators to minimize residual charge drops in the electrodes. The 4-channel sensing front-end is capable of multichannel sensing in the presence of artefacts as a result of its high total common-mode rejection ratio (TCMRR) that accounts for CMRR drop due to electrode mismatch. Experimental verification of a prototype fabricated in 180 nm process shows a stimulator front-end with 0.059% charge balance and 0.275 nA DC current error. The recording front-end consumes 3.24 μW, tolerates common-mode interference up to 1 Vpp and shows a TCMRR > 66 dB for 500 mVpp inputs.

Conference - IEEE Biomedical Circuits and Systems Conference BioCAS 2019
J.L. Valtierra, R. Fiorelli, N. Pérez-Prieto, M. Delgado-Restituto and A. Rodríguez-Vázquez
A 32 Input Multiplexed Channel Analog Front-End with Spatial Delta Encoding Technique and Differential Artifacts Compression  »
This paper describes a low-noise, low-power and high dynamic range analog front-end intended for sensing neural signals. In order to reduce interface area, a 32-channel multiplexer is implemented on circuit input. Furthermore, a spatial delta encoding is proposed to compress the signal range. A differential artifact compression algorithm is implemented to avoid saturation in the signal path, thus enabling reconstruct or suppressing artifacts in digital domain. The proposed design has been implemented using 0.18 μm TSMC technology. Experimental results shows a power consumption per channel of 1.0 μW, an input referred noise of 1.1 μVrms regarding the bandwidth of interest and a dynamic range of 91 dB.

Conference - IEEE Biomedical Circuits and Systems Conference BioCAS 2019
N. Pérez-Prieto, R. Fiorelli, J.L. Valtierra, P. Pérez-García, M. Delgado-Restituto and A. Rodríguez-Vázquez
Low-Noise and High-Efficiency Near-IR SPADs in 110nm CIS Technology  »
Photon detection at longer wavelengths is much desired for LiDAR applications. Silicon photodiodes with deeper junctions and larger multiplication regions are more sensitive to near-IR photons. This paper presents the complete electro-optical characterization of a P-well/Deep N-well single photon avalanche diode integrated in 110nm CIS technology. Devices with various sizes, shapes and guard ring widths have been fabricated and tested. The measured mean breakdown voltage is of 18V. The proposed structure has 0.4Hz/um2 dark count rate, 0.5% afterpulsing, 188ps FWHM (total) jitter and around 10% photon detection probability at 850nm wavelength. All figures have been measured at 3V excess voltage.

Conference - European Solid-State Device Research Conference ESSDERC 2019
I. Vornicu, F. Bandi, R. Carmona-Galán and A. Rodríguez-Vázquez

Webs relacionadas con el IMSE
Cl Américo Vespucio, 28. Parque Científico y Tecnológico Cartuja, 41092, Sevilla. Teléfono: 954466666, Fax: 954466600
martes, 19 de noviembre de 2019
Última actualización: 14.11.2019

© Copyright 2019 IMSE-CNM
Los contenidos de estas páginas web tienen solo carácter informativo. Los datos que aparecen pueden contener errores o no estar actualizados.
La información disponible, salvo indicación expresa en contrario, es susceptible de ser reutilizada total o parcialmente siempre que se cite la fuente de los documentos y su fecha de actualización.
En cualquier caso, este uso se regirá de acuerdo con lo legalmente dispuesto por el Consejo Superior de Investigaciones Científicas para publicarla en cualquier soporte o para utilizarla, distribuirla o incluirla en otros contextos accesibles a terceras personas.
Aviso legal web CSIC