Publicaciones del IMSE

Encontrados resultados para:

Autor: Ajay Vasudevan
Año: Desde 2002

Artículos de revistas


SL-Animals-DVS: event-driven sign language animals dataset
A. Vasudevan, P. Negri, C. di Ielsi, B. Linares-Barranco and T. Serrano-Gotarredona
Journal Paper · Pattern Analysis And Applications, vol. 24, no. 2, 2021
resumen      doi      

Non-intrusive visual-based applications supporting the communication of people employing sign language for communication are always an open and attractive research field for the human action recognition community. Automatic sign language interpretation is a complex visual recognition task where motion across time distinguishes the sign being performed. In recent years, the development of robust and successful deep-learning techniques has been accompanied by the creation of a large number of databases. The availability of challenging datasets of Sign Language (SL) terms and phrases helps to push the research to develop new algorithms and methods to tackle their automatic recognition. This paper presents ‘SL-Animals-DV’, an event-based action dataset captured by a Dynamic Vision Sensor (DVS). The DVS records non-fluent signers performing a small set of isolated words derived from SL signs of various animals as a continuous spike flow at very low latency. This is especially suited for SL signs which are usually made at very high speeds. We benchmark the recognition performance on this data using three state-of-the-art Spiking Neural Networks (SNN) recognition systems. SNNs are naturally compatible to make use of the temporal information that is provided by the DVS where the information is encoded in the spike times. The dataset has about 1100 samples of 59 subjects performing 19 sign language signs in isolation at different scenarios, providing a challenging evaluation platform for this emerging technology.

Congresos


Introduction and Analysis of an Event-Based Sign Language Dataset
A. Vasudevan, P. Negri, B. Linares-Barranco and T. Serrano-Gotarredona
Conference · IEEE International Conference on Automatic Face and Gesture Recognition FG 2020
resumen     

Human gestures recognition is a complex visual recognition task where motion across time distinguishes the type of action. Automatic systems tackle this problem using complex machine learning architectures and training datasets. In recent years, the use and success of robust deep learning techniques was compatible with the availability of a great number of these sets. This paper presents SL-Animals-DVS, an event-based action dataset captured by a Dynamic Vision Sensor (DVS). The DVS records humans performing sign language gestures of various animals as a continuous spike flow at very low latency. This is especially suited for sign language gestures which are usually made at very high speeds. We also benchmark the recognition performance on this data using two state-of-the-art Spiking Neural Networks (SNN) recognition systems. SNNs are naturally compatible to make use of the temporal information that is provided by the DVS where the information is encoded in the spike times. The dataset has about 1100 samples of 58 subjects performing 19 sign language gestures in isolation at different scenarios, providing a challenging evaluation platform for this emerging technology.

Learning weights with STDP to build prototype images for classification
A. Vasudevan, T. Serrano-Gotarredona and B. Linares-Barranco
Conference · Design and Technology of Integrated Systems in Nanoscale Era DTIS 2019
resumen     

The combination of Spike Timing Dependent Plasticity (STDP) and latency coding used in a spiking neural network has been shown to learn hierarchical features. In this paper we propose a new way to classify images using an SVM. Prototype images are built from the weights learned in an unsupervised manner using STDP. The prototype images are cross correlated with the input image and the peak of the cross correlation with each prototype image is used as additional features for an SVM. The network, demonstrated on the MNIST data set, achieves 99.15% testing accuracy which is the best reported accuracy for a SNN with unsupervised training.

Libros


No hay resultados

Capítulos de libros


No hay resultados

Otras publicaciones


No hay resultados

  • Revistas516
  • Congresos1076
  • Libros26
  • Capítulos de libros81
  • Otros9
  • 202140
  • 2020100
  • 201977
  • 2018106
  • 2017111
  • 2016104
  • 2015111
  • 2014104
  • 201380
  • 2012108
  • 2011102
  • 2010120
  • 200977
  • 200867
  • 200770
  • 200665
  • 200578
  • 200468
  • 200362
  • 200258
INVESTIGACIÓN
COMPARTIR