LIST OF EXAMPLES INCLUDED IN SIMSIDES

mod0.mdl Ideal "0"-order $\Sigma\Delta$ modulator mod1.mdl Ideal First-order SC $\Sigma\Delta$ modulator with FE integrator mod2.mdl Ideal Second-order SC $\Sigma \Delta$ modulator with FE integrator and real-waveform DAC mod2 idealmb.mdl Ideal Second-order SC $\Sigma\Delta$ modulator with FE integrator and multi-bit quantization and realwaveform DAC mod2 idealsb.mdl Ideal Second-order SC $\Sigma \Lambda$ modulator with FE integrator and single-bit quantization SDM2ndSC Zdomain.mdl Ideal Second-order $\Sigma\Delta$ modulator with FE integrator using a "Z-Domain" model SDM2ndSC DCgain.mdl Second-order SC $\Sigma\Delta$ modulator with FE integrator and single-bit quantization and OTA DC gain SDM2ndSC Noise.mdl Second-order SC $\Sigma\Delta$ modulator with FE integrator and single-bit quantization and thermal noise SDM2ndSC Settling.mdl Second-order SC $\Sigma\Lambda$ modulator with FE integrator and single-bit quantization and incomplete settling error SDM4thBPSC ZDomain.mdl Ideal Fourth-order Band-Pass $\Sigma \Lambda$ modulator with LDI resonators. considering "Z-Domain" models SDM4thBPSC Ideal.mdl Ideal Fourth-order SC Band-Pass $\Sigma\Delta$ modulator with LDI resonators SDM4thBPSC MonteCarlo.mdl Fourth-order SC Band-Pass $\Sigma \Delta$ modulator with LDI resonators and mismatch error SDM4thBPSC Noise.mdl Fourth-order SC Band-Pass $\Sigma \Delta$ modulator with LDI resonators and thermal noise SDM4thBPSC Settling.mdl Fourth-order SC Band-Pass $\Sigma \Delta$ modulator with LDI resonators and incomplete settling error c21 ideal.mdl Ideal cascade 2-1 SC $\Sigma\Delta$ modulator with FE integrator c211 ideal.mdl Ideal cascade 2-1-1 SC $\Sigma \Delta$ modulator with FE integrator

Basic Architectures

Switched-Capacitor (SC) $\Sigma\Delta$ Modulators

<pre>mod2_manual_example.mdl</pre>	Second-order Low-Pass example
	included in the user guide
mod2_FElp_multibit.mdl	Second-order Low-Pass with FE
	integrators and multi-bit
	quantization
mod2_LDlp_alleffects.mdl	Second-order Low-Pass with LD
	integrators including all circuit
	errors
mod2_LDbp_alleffects.mdl	Second-order Band-Pass with LD
	integrators including all circuit
	errors
fifthorder_LDlp_allerrors.mdl	Fifth-order Feed-forward Low-
	Pass with LD integrators including
	all circuit errors
c21_manual_example.mdl	Cascade 2-1 Low-Pass with FE
	integrators included in the user
all TEhn danain mdl	guide
c21_FEbp_dcgain.md1	Lascade 2-1 Band-Pass with FE
all pplm alloffacts mal	Integrators including OTA DC gain
CZI_FEIP_allellects.mdl	Lascade 2-1 Low-Pass with FE
	integrators including an circuit
all EEle alloffoata mb mdl	Concerds 2.1 Low Dags with multi
	bit quantization (last stage) and
	EF integrators including all singuit
	arrors
c21 FElp mismatch.mdl	Cascade 2-1 Low-Pass with FF
	integrators including mismatch
	error
c21 LDlp cnl.mdl	Cascade 2-1 Low-Pass with LD
	integrators including nonlinear
	capacitors
c21_FEbp_sampnl.mdl	Cascade 2-1 Band-Pass with FE
	integrators including nonlinear
	switch on resistance
c21_FEbp_sampnl_IM3.mdl	Cascade 2-1 Band-Pass with FE
	integrators including nonlinear
	switch on resistance and two-tone
	input to characterize IM3
c211_FElp_ideal.mdl	Ideal cascade 2-1-1 Low-Pass
	with FE integrators
c211_FElp_alleffects.mdl	Cascade 2-1-1 Low-Pass with FE
	integrators including all circuit
	errors
c211_FElp_alleffects_mb.mdl	Cascade 2-1 Low-Pass with multi-
	bit quantization (last stage) and

	FE integrators including all circuit
	errors
c211_FElp_noise.mdl	Cascade 2-1-1 Low-Pass with FE
	integrators including thermal
	noise
c211_FElp_settling.mdl	Cascade 2-1-1 Low-Pass with FE
	integrators including incomplete
	settling error
c211_FElp_DCgain.mdl	Cascade 2-1-1 Low-Pass with FE
	integrators including finite OTA
	DC gain

Switched-Current (SI) $\Sigma\Delta$ Modulators

c211_FEbp_basic.mdl	Ideal cascade 2-1-1 Band-Pass
	with Forward-Euler (FE)
	integrators
c211_FEbp_finitecond.mdl	Cascade 2-1-1 Band-Pass with
	finite output conductance with FE
	integrators
c211_LDbp_finitecond_settling.mdl	Cascade 2-1-1 Low-Pass with LD
	integrators including finite output
	conductance and incomplete
	settling error
c211_FEbp_allerrors.mdl	Cascade 2-1-1 Band-Pass with FE
	integrators including all circuit
	errors
c211_FElp_basic.mdl	Ideal cascade 2-1-1 Low-Pass
	with FE integrators
c211_FElp_allerrors.mdl	Ideal cascade 2-1-1 Low-Pass
	with FE integrators including all
	circuit errors
mod2_FEbp_alleffects.mdl	Second-order Low-Pass with FE
	integrators including all circuit
	errors
mod2_LDlp_basic_multibit.mdl	Second-order Low-Pass with LD
	integrators and multi-bit
	quantization
modelsi.m	M file including some model
	parameters

Continuous-Time (CT) $\Sigma\Delta$ Modulators

mod2_lp_GmC_ideal.mdl	Ideal second-order Low-Pass CT
	modulator with Gm-C
	integrators
<pre>mod2_lp_GmC_multibit_td_jitter.mdl</pre>	Ideal second-order Low-Pass CT
	modulator with Gm-C
	integrators, multi-bit
	quantization and clock jitter
	error
mod5th lp ct.mdl	Fifth-order Low-Pass CT
	modulator with Gm-C
	integrators and main circuit
	errors
mod5th lp ct depdelay.mdl	Fifth-order Low-Pass CT
	modulator with Gm-C
	integrators and signal-
	dependent loop delay
mod5th lp ct fixdelay.mdl	Fifth-order Low-Pass CT
	modulator with Gm-C
	integrators and fixed-loop delay
mod5th ff GmC.mdl	Fifth-order Feed-Forward Low-
	Pass CT modulator with Gm-C
	integrators and fixed-loop delay
mod2 BPgmC 1pole.mdl	Second-order Band-Pass CT
	modulator with Gm-C
	integrators with 1-nole
	dynamics
mod2 BPgmC 1pole delay.mdl	Second-order Band-Pass CT
	modulator with Gm-C
	integrators with 1-nole
	dynamics and excess loop delay
mod2 BPgmC lpole td jitter.mdl	Second-order Band-Pass CT
	modulator with Gm-C
	integrators with 1-nole
	dynamics and clock jitter error
mod2 BPgmC 2poles.mdl	Second-order Band-Pass CT
	modulator with Gm-C
	integrators with 2-nole
	dynamics
c211 GmC mdl	Cascade 2-1-1 Low-Pass CT
	modulator with Gm-C
	integrators and main circuit
	errors
c32 GmC.mdl	Cascade 3-2 Low-Pass CT
	modulator with Cm-C
	integrators and main circuit
	arrors
	CI1013

c22_SR_GmC_SC.mdl	Cascade 2-2 Hybrid Gm-C/SC
	Modulator with main circuit
	errors
c22_SR_GmC_SI.mdl	Cascade 2-2 Hybrid Gm-C/SI
	Modulator with main circuit
	errors
c22_DSMR_gmC_SC_r2.mdl	Cascade 2-2 Downsampling
	Multirate Hybrid Gm-C/SC
	Modulator with multirate ratio
	r=2
c22_DSMR_gmC_SC_r4.mdl	Cascade 2-2 Downsampling
	Multirate Hybrid Gm-C/SC
	Modulator with multirate ratio
	r=4

Frequency/Time-based (VCO/GRO) $\Sigma\Delta$ Modulators (Library named FREQ_BASED_SDMs)

BabaieRomboutsVCOSDM	Model based on the VCO- $\Sigma\Delta M$ proposed by A. Babaie and P. Rombouts at IEEE JSSC, Aug. 2017.
MASH MASH21_DT MASH31_DT MASH_3bit MASH_4bit MASH_VCO_GRO	Several models of VCO/GRO-GRO cascade architectures (one of them corresponds to the architecture by M. Honarparvar et al. at ISCAS 2018.)
Multiphase_VCOSDM	Multiphase (11-phase) VCO-based - ΣΔΜ
Standalone_GRO	Single GRO-based $\Sigma \Delta M$ including both linear and nonlinear models