Publicaciones del IMSE

Encontrados resultados para:

Autor: Ignacio M. Delgado Lozano
Año: Desde 2002

Artículos de revistas


Gate-Level Design Methodology for Side-Channel Resistant Logic Styles using TFETs
I.M. Delgado-Lozano, E. Tena-Sánchez, J. Núñez and A.J. Acosta
Journal Paper · IEEE Embedded Systems Letters, vol. 14, no. 2, pp 99-102, 2021
resumen      doi      

The design of secure circuits in emerging technologies is an appealing area that requires new efforts and attention as an effective solution to secure applications with power constraints. The paper deals with the optimized design of DPA-resilient hiding-based techniques, using Tunnel Field-Effect Transistors (TFETs). Specifically, proposed TFET implementations of Dual-Precharge-Logic primitives optimizing their computation tree in three different ways, are applied to the design of PRIDE Sbox-4, the most vulnerable block of the PRIDE lightweight cipher. The performance of simulation-based DPA attacks on the proposals have shown spectacular results in security gain (34 out of 48 attacks fail for optimized computation trees in TFET technology) and power reduction (x25), compared to their CMOS-based counterparts in 65nm, which is a significant advance in the development of secure circuits with TFETs.

Projection of dual-rail DPA countermeasures in future FinFET and emerging TFET technologies
I.M. Delgado-Lozano, E. Tena-Sánchez, J. Núñez and A. Acosta
Journal Paper · ACM Journal on Emerging Technologies in Computing Systems, vol. 16, no. 3, article 30, 2020
resumen      doi      

The design of near future cryptocircuits will require greater performance characteristics in order to be implemented in devices with very limited resources for secure applications. Considering the security against differential power side-channel attacks (DPA), explorations of different implementations of dual-precharge logic gates with advanced and emerging technologies, using nanometric FinFET and Tunnel FET transistors, are proposed aiming to maintain or even improve the security levels obtained by current Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) technologies and reducing the resources needed for the implementations. As case study, dual-precharge logic primitives have been designed and included in the 4-bit substitution box of PRIDE algorithm, measuring the performance and evaluating the security through simulation-based Differential Power Analysis (DPA) attacks for each implementation. Extensive electrical simulations with predictive Predictive Transistor model on scaled 16nm and 22nm MOSFET, 16nm and 20nm FinFET, and 20nm Tunnel Field Effect Transistor (TFET) demonstrate a clear evolution of security and performances with respect to current 90nm MOSFET implementations, providing FinFET as fastest solutions with a delay 3.7 times better than conventional proposals, but TFET being the best candidate for future cryptocircuits in terms of average power consumption (x0.02 times compared with conventional technologies) and security in some orders of magnitude.

Congresos


Benchmarking of nanometer technologies for DPA-resilient DPL-based cryptocircuits
E. Tena-Sánchez, I.M. Delgado-Lozano, J. Nuñez and A.J. Acosta
Conference · Conference on Design of Circuits and Integrated Systems DCIS 2018
resumen     

The design of cryptographic circuits is requiring greater performance restrictions due to the constrained environments for IoT applications in which they are included. Focusing on the countermeasures based on dual-precharge logic styles, power, area and delay penalties are some of their major drawbacks when compared to their static CMOS single-ended counterparts. In this paper, we propose a initial study where scaled CMOS technnology and FinFET emerging technology are considered to foresee the relationship between ultra low power consumption, reduced delay, and security. As demonstration vehicle, we measure the performance and the security level achieved by different Substitution Boxes, implemented in different technologies. As main results, nanometer CMOS technologies maintains considerable security levels at reasonable power and delay figures, while FinFETs outperform CMOS in power and delay reduction, but with a non negligible degradation in security.

Libros


No hay resultados

Capítulos de libros


No hay resultados

Otras publicaciones


No hay resultados

  • Revistas585
  • Congresos1171
  • Libros30
  • Capítulos de libros81
  • Otros9
  • 20245
  • 202335
  • 202281
  • 202183
  • 2020103
  • 201977
  • 2018106
  • 2017111
  • 2016104
  • 2015111
  • 2014104
  • 201380
  • 2012108
  • 2011102
  • 2010120
  • 200977
  • 200867
  • 200770
  • 200665
  • 200578
  • 200468
  • 200362
  • 200259
INVESTIGACIÓN
COMPARTIR